Endogenous human CaMKII inhibitory protein suppresses tumor growth by inducing cell cycle arrest and apoptosis through down-regulation of the phosphatidylinositide 3-kinase/Akt/HDM2 pathway.
نویسندگان
چکیده
Inhibition of calcium/calmodulin-dependent protein kinase II (CaMKII) results in hypophosphorylation of CaMKII substrates and in some cases suppresses cell growth. We previously presented the first report of the human CaMKII inhibitory protein, hCaMKIINbeta. Here we report the functional characterization of hCaMKIINbeta in ovarian cancer cells. We showed that hCaMKIINbeta was highly expressed in normal ovarian tissues but was not detected in human ovarian adenocarcinoma, indicating that decreased expression of hCaMKIINbeta may be involved in the pathogenesis of human ovarian adenocarcinoma. As an endogenous CaMKII inhibitor, hCaMKIINbeta could significantly inhibit the growth of human ovarian cancer cells in vitro. In vivo, hCaMKIINbeta decreased the tumorigenicity and growth of HO-8910PM human ovarian cancer cells and prolonged the survival of tumor-bearing mice. hCaMKIINbeta blocked cell cycle progression and induced apoptosis of HO-8910PM cells, which was correlated with the up-regulation of p21, p53, and Bax and the down-regulation of cyclin A, cyclin D1, cyclin E, CDK2, phosphorylated retinoblastoma, and Bcl-2. We further demonstrated that hCaMKIINbeta-mediated CaMKII inhibition suppressed Akt activation, leading to the down-regulation of HDM2, which was responsible for the up-regulation of p53 and p21 in human ovarian cancer cells. The tumor-suppressive effect and the negative expression in human ovarian cancer tissues suggest that hCaMKIINbeta may play an important role in the regulation of tumor cell growth, possibly contributing to the development of new therapeutic strategies for ovarian cancer.
منابع مشابه
A novel treatment approach for retinoblastoma by targeting epithelial growth factor receptor expression with a shRNA lentiviral system
Objective(s): Non-invasive treatment options for retinoblastoma (RB), the most common malignant eye tumor among children, are lacking. Epithelial growth factor receptor (EGFR) accelerates cell proliferation, survival, and invasion of many tumors including RB. However, RB treatment by targeting EGFR has not yet been researched. In the current study, we investigated the effect of EGFR down-regula...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملLong non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway
Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...
متن کاملPI3K/Akt inhibition and down-regulation of BCRP re-sensitize MCF7 breast cancer cell line to mitoxantrone chemotherapy
Objective(s):Multidrug resistance (MDR) of cancer cells is a major obstacle to successful chemotherapy. Overexpression of breast cancer resistance protein (BCRP) is one of the major causes of MDR. In addition, it has been shown that PI3K/Akt signaling pathway involves in drug resistance. Therefore, we evaluated the effects of novel approaches including siRNA directed against BCRP and targeted t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 284 37 شماره
صفحات -
تاریخ انتشار 2009